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A TECHNIQUE OF TREATING NEGATIVE WEIGHTS IN WENO SCHEMES”

JING SHI', CHANGQING HU%, AND CHI-WANG SHUS

Abstract. High order accurate weighted essentially non-oscillatory (WENO) schemes have recently been
developed for finite difference and finite volume methods both in structured and in unstructured meshes.
A key idea in WENOQ scheme is a linear combination of lower order fluxes or reconstructions to obtain a
higher order approximation. The combination coefficients, also called linear weights, are determined by
local geometry of the mesh and order of accuracy and may become negative. WENO procedures cannot
be applied directly to obtain a stable scheme if negative linear weights are present. Previous strategy for
handling this difficulty is by either regrouping of stencils or reducing the order of accuracy to get rid of the
negative linear weights. In this paper we present a simple and effective technique for handling negative lincar
weights without a need to get rid of them. Test cases are shown to illustrate the stability and accuracy of

this approach.

Key words. weighted essentially non-oscillatory, negative weights, stability, high order accuracy, shock

calculation

Subject classification. Applied and Numerical Mathematics

1. Introduction. High order accurate weighted essentially non-oscillatory (WENO) schemes have re-

cently been developed to solve a hyperbolic conservation law
w+ V- f(u) =0. : (1.1)

The first WENO scheme was constructed in [18] for a third order finite volume version in one space dimension.
In [10], third and fifth order finite difference WENOQ schemes in multi space dimensions are constructed, with
a general framework for the design of the smoothness indicators and nonlinear weights. Later, second, third
and fourth order finite volume WENO schemes for 2D general triangulation have been developed in [4] and
[8]. Very high order finite difference WENO schemes (for orders between 7 and 13) have been developed in
[1]. Central WENQ schemes have been developed in [12], [13] and [14].

WENO schemes are designed based on the successful ENO schemes in {7, 23, 24]. Both ENO and
WENO use the idea of adaptive stencils in the reconstruction procedure based on the local smoothness
of the numerical solution to automatically achieve high order accuracy and non-oscillatory property near
discontinuities. ENO uses just one (optimal in some sense) out of many candidate stencils when doing the
reconstruction; while WENO uses a convex combination of all the candidate stencils, each being assigned
a nonlinear weight which depends on the local smoothness of the numerical solution based on that stencil.
WENO improves upon ENO in robustness, better smoothness of fluxes, better steady state convergence,
better provable convergence properties, and more efficiency. For a detailed review of ENO and WENO
schemes, we refer to the lecture notes [21, 22].
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WENO schemes have already been widely used in applications. Some of the examples include dynamical
response of a stellar atmosphere to pressure perturbations [3]; shock vortex interactions and other gas
dynamics problems [5], [6]; incompressible flow problems [26]; Hamilton-Jacobi equations [9]; magneto-
hydrodynamics [11]; underwater blast-wave focusing [15]; the composite schemes and shallow water equations
[16], [17], real gas computations [19], wave propagation using Fey’s method of transport {20]; etc.

A key idea in WENO schemes is a linear combination of lower order fluxes or reconstructions to obtain
a higher order approximation. The combination coefficients, also called linear weights, are determined by
local geometry of the mesh and order of accuracy and may become negative. WENQO procedures cannot
be applied directly to obtain a stable scheme if negative linear weights are present. Previous strategy for
handling this difficulty is by either regrouping of stencils (e.g. in [8]) or reducing the order of accuracy (e.g.
in [12]) to get rid of the negative linear weights. In this paper we present a siniple and effective technique
for handling negative linear weights without a need to get rid of them. Test cases will be shown to illustrate
the stability and accuracy of this ;ipproach.

We first summarize the general WENOQO reconstruction procedure, consisting of the following steps. We
assume we have a given cell A (which could be an interval in 1D, a rectangle in a 2D tensor product mesh,
or a triangle in a 2D unstructured ineéh) and a fixed point & within or on one edge of the cell.

1. We identify several stencils §;, j = 1,...,¢, such that A belongs to each stencil. We denote by

q .
T = U §; the larger stencil which contains all the cells from the g stencils.
=1
2. We have a (relatively) lower order reconstruction or interpolation function (usually a polynomial),

denoted by p;(z), associated with each of the stencils S;, for j = 1,...,q. We also have a (relatively)
higher order reconstruction or interpolation function (again usually a polynomial), denoted by Q(x),
associated with the larger stencil 7.

3. We find the combination coefficients, also called linear weights, denoted by 1. ... , ¥4, such that

a :
Q) =Y wp;(a©) (1.2)
j=1

for all possible given data in the stencils. These linear weights depend on the mesh geometry, the
point ¢, and the specific reconstruction or interpolation requirements, but not on the given solution

data in the stencils.
4. We compute the smoothness indicator, denoted by 3;, for each stencil S;, which measures how
smooth the function p;(z) is in the target cell A. The smaller this smoothness indicator j3;, the
smoother the function p;(z) is in the target cell. In all of the current WENO schemes we are using

the following smoothness indicator:

B; = Z /AlA]"‘l_l(Dapj(m))de (1.3)

1<]aj<k

for j = 1,...,q, where k is the degree of the polynomial pJ(.r) and |A] is the area of the cell A in 2D.
This factor is different for 1D or 3D: the purpose of it is to bring the smoothness indicator invariant
* under spatial scaling. . '
5. We compute the nonlinear weights based on the smoothness indicators:

“s 9= (1.4)
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where 7; are the linear weights determined in step 3 above, and ¢ is a small number to avoid the
denominator to become 0. We are using ¢ = 107° in all the computations in this paper. The final

WENO approximation or reconstruction is then given by

q
R(z%) = wp;(a®). (1.5)
j=1

We remark that all the coefficients in the above steps which depend on the mesh but not on the data of
the numerical solution, should be computed and stored at the beginning of the code after the generation of
the mesh but before the time evolution starts.

We now use a simple example to illustrate the steps outlined above. We assume we are given a uniform
mesh I; = (zi_1;2,%i41/2) and cell averages of a function u(x) in these cells, denoted by #;. We would
like to find a fifth order WENO reconstruction to the point value u(z;;/2), based on a stencil of five cells
{Ii_a,Li_1, I, gy, Iisn }, with the target cell containing the point x4/, chosen as A = [;.

In step 1 above we could have the following three stencils:
St = {Ii—2, Iioy, Ii}, Sy ={Lio1, i, Iisr }, Ss = {Ii, Iiy1, Iiy2},
which make up a larger stencil
T =L, Lio, I, i1 Tiia }

In step 2 above we would have three polynomials p;(z) of degree at most two, with their cell averages
agreeing with that of the function w in the three cells in each stencil §;. The higher order function Q(z) is a
polynomial of degree at most four, with its cell averages agreeing with that of the function u in the five cells
in the larger stencil 7. The three lower order approximations to u(r;/2), associated with p;(z), in terms

of the given cell averages of u, are given by:

(z ) 11_ T + llﬁ
9) = =Uj_2 — —U;_ — U,
Pi\Tip1/2 3 2 g 1 g v
1_ 5 _ 1_
p2ATiv1y2) = gl + g + Uit : (1.6)
(1-. )-—_l_ﬁ~+§a. -lﬁ.
P3\Lipy/2) = Ui T Ui T gt

Each of them is a third order approximation to u(z;y,/2). The higher order approximation to u(Tip172)

associated with Q(z), is given by:

1. 13 479 _ 1_ _
Q@iy1p2) = 3042 7 goti-! + g0 + 5ot T gl (1.7)

which is a fifth order approximation to u(x;y;y2)-
In step 3 above we would have

-1
M = 101

It can be readily verified, using (1.6) and (1.7), that
Q(Tis172) =7 PilTiv12) +¥2 P2ATiga/2) + 73 P3(Tirrye)

for all possible given data @, j =% —2,i — 1,4,i+ 1,1+ 2.
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F1G. 1.1. Reconstructions to u(ri+]/2)‘.‘ Solid lines: ezxact funclion; Syinbols: ;zz;merical approrimalions. Left: fifth order
WENO. Right: fifth order traditional.

In step 4 above we could easily work out from (1.3) the three smoothness indicators given by

13

1 _ _ 2
By = E ('l_ti_g - 201 + 1_15)2 + Z (ﬂ,‘_g — 4, + 3ui)? s
13 I -
B2 = 7 (g1 — 20 + Wigy) + 1 (Wioy — Wis1)”
13, e Lo
B3 = ﬁ (u,‘ - 271,‘+1 + U,’+2) + Z (3‘11,; - 411,‘+1 + ui+'2) .

We notice in particular that the linear weights v, v2, 3 in step 3 above are all Vpositivre; Tn such cases, the
WENO reconstruction procedure outlined above and the scheme based on it work very well. In Fig. 1.1 we
plot the approximation to u(z) for a discontinuous function u(z) = 2« for r < 0 and u(r) = —20 otherwise,
by the fifth order WENO reconstruction on the left and by the fifth order traditional reconstruction (1.7)
on the right, with a mesh x; = (i — 0.4965)Azr with Az = 0.02. We can clearly see that WENO avoids the
over and undershoots near the discontinuity.

We now look at another simple example where some of the linear weights in step 3 above would become
negative. We have exactly the same setting as above except now we seek the reconstruction not at the cell
boundary but at the cell center x;. This is needed by the central schemes with staggered grids [12]. Thus,

step 1 would stay the same as above; step 2 would produce

(z;) = 1ﬂ~ +1" +23,7,
nlx;) = 54 i—2 12ut~1 oq >
1 _ 13 _ 1 _
pa(xs) = -2—4u,_1 + ﬁul - ﬁUH-I’ (1.8)
23 1 1

s(2)) = @ + —Wiy1 = o bivae
p3(z:) gq i T Uil T 5tz
Each of them is a third order reconstruction to u(z;). The higher order reconstruction to u(x;), associated
with Q(x), is given by:

3 29 _ 1067_ 29 3

Ti) = oliog = a1 + oo — ool a2, L.
Q) = gio™-2~ o™ * ¥ 960 * ~ 180+ g™ (1.9)
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Fi1G. 1.2. Reconstructions to u(x;). Solid lines: exacl function; symbols: numerical approrimations. Lefi: fifth order
WENO. Right: fifth order traditional.

which is a fifth order reconstruction to u(z;). Step 3 would produce the following weights:
9 49 9
%:_8—0’ 72:'_’4'—0'1 ’73=—@-
Notice that two of them are negative. The smoothness indicators in step 4 will remain the same. This
time, the WENQ approximation, shown at the left of Fig. 1.2, is less satisfactory (in fact, even worse than
a traditional fifth order reconstruction show on the right), because of the negative linear weights.

We remark that negative linear weights do not appear in finite difference WENO schemes in any spatial
dimensions for conservation laws for any order of accuracy [10], [1], and they do not appear in one dimensional
as well as some multi-dimensional finite volume WENO schemes for conservation laws. Unfortunately, they
do appear in some other cases, such as the central WENO schemes using staggered meshes we have seen
above, high order finite volume schemes for two dimensjons described in [8] and in this paper, and finite
difference WENQO approximations for second derivatives.

While on approximation alone the appearance of negative linear weights might be annoying but perhaps
not fatal (Fig. 1.2), in solving a PDE the result might be more serious. As an example, in Fig. 1.3 we show
the results of using a fourth order finite volume WENO scheme [8] on a non-uniform triangular mesh shown

at the left, which has negative linear weights, for solving the two dimensional Burgers equation:

uy + (u;)x + (—UQ—Q) =0 (1.10)

in the domain [~2,2] x [—~2,2] with an initial condition ug(z,y) = 0.3 + 0.7sin (¥(x +y)) and periodic
boundary conditions. We can see that serious oscillation appears in the numerical solution once the shock
has developed. The oscillation eventually leads to instability and blowing up of the numerical solution for
this example.

The main purpose of this paper is to develop a simple and eflective technique for handling negative linear
weights without a need to get rid of them. Test cases will be shown to illustrate the stability and accuracy

of this approach.
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Fic. 1.3. 2D Burgers’ equation. Left: non-uniform triangular mesh used in the computation. Right: fourth order WENO

result at t = 0.473, cfl=0.2, without any special treatment for the negative linear weights.

2. A splitting technique. We now introduce a splitting technique to treat the negative weights. It
is very simple, involves little additional cost, yet is quite cffective. The WENO procedure outlined in the
previous section is only modified in step 5 in the following way:

5 If min(v1,...,74) > 0 proceed as before. Othéfwise, we split the linear weights into two parts:
positive and negative. Define
L1 p P .
Y =3 (vi +01l), Yo=Y T e i=1,...q 2.1)

where we take # = 3 all the numerical tests. We then scale them by
ot =3 5 A=Al i=la (2.2)

We now have two split polynomials

Q*%) =Y Afpie®) (2:3)
=1
which satisfy
Q%) = 67Q*(z%) - o= Q™ (2°). (2.4)

We can then define the nonlinear weights (1.4) for the positive and negative groups “,/J-i separately,
denoted by wjt, based on the same smoothness indicator ;. We will then define the WENO
approximation R*(z¢) separately by (1.5), using wji, and form the final WENO approximation by

R(xf) = ot RY(z%) - 0~ R~ (zY).

We remark that the key idea of this decomposition is to make sure that every stencil has a significant

representation in both the positive and the negative weight groups. Within each group, the WENO idea of
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redistributing the weights subject to a fixed sum according to the smoothness of the approximation is still
followed as before.

For the simple example of fifth order WENO reconstruction to u(z;), the split linear weights correspond-
ing to (2.1) are, before the scaling,

.9 - 9 .y 49 __ 49 9 __ 9
’h=%,’)’1=%» 72:%»7-2:@7 73=%,73=E-

We notice that, as the most expensive part of the WENO procedure, namely the computation of the
smoothness indicators {1.3), has not changed, the extra cost of this positive/negative weight splitting is very
small.

However this simple and inexpensive change makes a big difference to the computations. In Fig. 2.1 we
show the result of the two previous unsatisfactory cases, the fifth order WENO reconstruction to u(z;) in
Fig. 1.2 left, and the approximation to the Burgers equation in Fig. 1.3 right, now using WENO schemes
with this splitting treatment. We can see clearly that the results are now as good as one would get from
WENO schemes having only positive linear weights.

It is easy to prove that the splitting maintains the accuracy of the approximation in smooth regions.
We will demonstrate this fact in the following sections. We will also demonstrate the effectiveness of this
simple splitting technique through a few selected numerical examples in the next sections. The main WENO
schemes we will consider are fifth order finite volume WENO schemes on Cartesian meshes, and the third
and fourth order finite volume WENO schemes on triangular meshes. In both cases negative linear weights
appear regularly.

The calculations are performed on SUN Ultra workstations and also on the IBM SP parallel computer
at TCASCV of Brown University. The parallel efficiency of the method is excellent (more than 90%).

3. 2D finite volume WENO schemes on Cartesian meshes.

3.1. The schemes. We describe two different ways to construct fifth order finite volume WENO

schemes on Cartesian meshes. Comparing with finite difference WENO methods [10], finite volume meth-



ods have the advantage of an applicability of using arbitrary non-uniform meshes, at the price of increased

computational cost [2].
We define the cell:

Lij = (i3, 7y

1% [y 1,954 1] (3.1)

[T

fori=1,..,m,j =1,..,n, Where I; ; needs not be uniform or smooth varying.

The three-point Gaussian quadrature rule is used at each cell edge when evaluating the numerical flux
in order to maintain fifth order accuracy. Let (€, y®) denote one of the Gaussian quadrature points at the
cell boundary of I; j given by I' = {z = Ti_1,Y-1 SyS iy }. There are two ways to perform a WENO
reconstruction at the point (z¢,y%). ————=

Genuine 2D:. The first WENO reconstruction is genuine 2D finite volume. We can sce that there are
totally nine stencils Sy¢ (s,t = —1,0,1). Each stencil S;, contains 3 x 3 cells centered around Ii;s 544
On each stencil we can construct a Q2 polynomial (tensor product of second order polynomials in z and y)
satisfying the cell average condition (i.e. its cell average in each cell inside the stencil equals to the given

1
value). Let T = |J Ss, which contains 5 x 5 cells centered around 7, ;. On 7 we can construct a Q*
s,i=—1
polynomial satisfying the cell average condition. The WENO reconstruction is then performed according to

the steps outlined in sections 1 and 2.
We would like to make the following remarks: .
1. By using a Lagrange interpolation basis, we can easily find the unique linear weights.
2. Even for a uniform mesh, a negative linear weight appears for the middle Gaussian point (xC,y%) =
(z;_ 1Y ;). Such appearance of nergative linear weights has also been observed in the central WENO
schemes [12], see the example in sections 1 and 2 before.
3. By Taylor expansions, we can prove that the smoothness indicators yield a uniform fifth order

accuracy in smooth regions. See [10] for the method of proof.

Dimension by Dimension:. The second WENO reconstruction exploits the tensor product nature of the
interpolation we use. This WENO procedure is performed on a dimension by dimension fashion. The WENO
schemes applied in [5], [6] belong to this class. Consider the point (z&,y“) as above. First we perform a
one dimensional WENO reconstruction in the y direction, in order to get the one dimensional cell averages
{in the x direction) w(e,y%). Then we perform another one dimensional WENO reconstruction to w in the
z direction, to obtain the final reconstructed point value at (z%,y%).

We would like to make the following remarks:

1. For a scalar equation, the underlying linear reconstructions of the above two versions are equivalent.
For nonlinear WENO reconstructions they are not equivalent. Both of them are fifth order accurate
~ but the actual errors on the same mesh may be different, see Table 3.1 below.
2. For systérﬁé of conservation laws such as the Euler equations of gas dynamics, both versions of the
WENO reconstruction should be performed in local characteristic fields.
3. The dimension by dimension version of the WENO reconstruction is less expensive and requires

smaller memory than the genuine two dimensional version. The CPU time saving is about a factor

of 4 for the Euler equations in our implementation. The computed results are mostly similar from-

both versions.

In the following, we will give numerical examples computed by the above WENO schemes. Splitting

technique has been used in all the computations when negative lincar weights appear. We will show the

U0 T e e e e



TABLE 3.1
2D vortez evolution

H ” genuine FV H dim-by-dim H
N Ax L> error | order || L° error | order
20 | 6.71E-1 || 4.38E-2 | 5.26E-2
40 | 377E-1 || 3.10E-3 | 4.59 || 5.66E-3 | 3.86
80 | 2.01E-1 || 1.20E4 | 5.15 || 3.96E-4 | 4.22
160 | 1.00E-1 | 4.39E-6 | 4.76 | 7.96E-6 | 5.62
320 | 5.00E-2 || 1.88E-7 | 4.53 | 2.90E-7 | 4.77

results for both smooth and discontinuous problems.

3.2. 2D vortex evolution. First, we check the accuracy of the WENO schemes constructed above.
The two dimensional vortex evolution problem [21], [8] is used as a test problem.

We solve the Euler equations for compressible flow in 2D
U+ f(U)e + g(U)y =0, (3.2)
where

U = (p, pu, pv, E)7,
F(U) = (pu, pu® + p, puv,u(E + p))7,

9(U) = (pv. puv, pv* + p,o(E +p))" .

Here p is the density, (u,v) is the velocity, E is the total energy, p is the pressure, related to the total energy
by E = 20 + p(u® +v?) with 7 = 1.4,

The setup of the problem is: the mean flow is p = 1, p = 1, (u,v) = (1,1) and the computational
domain is [0, 10} x [0,10]. We add, to the mean flow, an isentropic vortex (perturbations in (u,v) and the

temperature 7' = 5, no perturbation in the entropy S = f;):

I
e

(bu, v) = ie"ﬁ“—r”)(—y,'f), §T = -—————(78_77:2)‘26‘—"2, sS
where (Z,7) = (r — 5,y — 5), 72 = 7% + 7, and the vortex strength € = 5.

We use non-uniform meshes which are obtained by an independent random shifting of each point from a
uniform mesh in ecach direction within 30% of the mesh sizes. The solution is computed up to { = 2. Table 3.1
shows the L> errors of p. We can see that both the genuine two dimensional finite volume WENOQO scheme
and the dimension by dimension finite volume WENQO scheme can achieve the desired order of accuracy

while the genuine two dimensional scheme gives smaller errors for the same mesh.

3.3. Oblique shock tubes. The purpose for this test is to see the capability of the rectangular WENO
schemes in resolving waves that are oblique to the computational meshes. For details of the problem, we refer
to [10]. The 2D Sod’s shock tube problem is solved where the initial jump makes an angle # against the
axis. We take our computational domain to be [0, 6] x [0, 1] and the initial jump starting at (x,y) = (2.25,0)
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FIG. 3.1. Oblique Sod’s problem. Density p. Top: contour, genuine two dimensional WENO; middle: contour, dimension

by dimension WENO; bottom: cut at the bottom of the computalzonal domain, the solid line is the ezact solution, the triangles
are the genuine two dimensional WENO results, and the circles are the dimension by dimension WENO results.

and mdl\mg af=7] angle wi th the T axis. The solutlon is Computed up to t=12o0na96 x16 umform
mesh. In Fig 3.1 we plot the density contours computed by the above two W E’\IO schemes and the density

cut at the bottom of the computatlonal domam We (‘an qee that both schemes perform equally well in

resolving the waves. The genuine two dimensional scheme gives a shghtl) better resolutlon in the contact

discontinuity and the rarefaction wave.

3.4. A Mach 3 wind tunnel with a step. This model problem is originally from [25]. The setup
of the problem is: The wind tunnel is 1 length unit wide and 3 length units long. The step is 0.2 length
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F1G. 3.2. Forward step problem, Ar = Ay = 5, 35+ Téﬁ’ 512—0 from top to bottom. 30 contours from 0.12 to 6.41, dimension
by dimension WENO.

units high and is located 0.6 length units from the left-hand end of the tunnel. The problem is initialized
by a right-going Mach 3 flow. Reflective boundary conditions are applied along the wall of the tunnel and
inflow /outflow boundary conditions are applied at the entrance/exit. The corner of the step is a singular
point and we treat it the same way as in [25], which is based on the assumption of a nearly steady flow in
the region near the corner. We show the density contours at time ¢ = 4 in Fig 3.2. Only the results from
the dimension by dimension WENO scheme are shown. Uniform meshes of Az = Ay = &, &, 75, ;g are

used.

3.5. Double Mach reflection. This problem is also originally from [25]. The computational domain

for this problem is chosen to be [0,4] x [0,1]. The reflecting wall lies at the bottom, starting from z = .

Initially a right-moving Mach 10 shock is positioned at z = é, y = 0 and makes a 60° angle with the z axis.
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F16. 3.3. Double Mach reflection, Ax = Ay = -241—0 (top and lower left) and ﬁ (middle and lower right). Genuine {wo
dimensional WENO. Blow-up regions at the bottom for details.

For the bottom boundary, the exact post-shock condition is imposed for the part from z =0 to z = E and
a reflective boundar; r'ondmon is used for the rest. At the top boundary, the flow values are set to describe
the exact motion of a Mach 10 shock. We compute the solution up to t = 0.2. Fig 3.3 and Fig 3.4 show
the equally spaced 30 density contours from 1.5 to 22.7 computed by the genuine two dimensional and the
dimension by dimension WENO schemes. We use uniforin meshes with Az = Ay = 545 40 480 We can see

that the results from both schemes are comparable. -~ - — -—

4. 2D finite volume WENO schemes on trxangular meshes. Both thlrd and fourth order finite
voluxne WENO schemes on trlztgéular meshes have been constructed in [8]. The optional linear weights in
such schemes are ‘not umque ‘These are then chosen to avoid negative weights whenever possible, and if that
fails, a grouping (of stencils) technique is used in [8], which works fairly well in the third order case with
quite general trxangulatlon but can yield positive weights for the fourth order case only with fairly uniform
triangulation. In this section, we do not seek positive linear weights as in [8], but rather use the splitting

technique to treat the negative linear weights when they appear. For scalar equation, the scheme is stable

12
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Fi1G. 3.4. Double Mach reflection, Ax = Ay = ﬁﬁ (top and lower left) and Ft% (middle and lower right). Dimension by
dimension WENO. Blow-up regions at the bottom for details.

in all runs. For systems of conservation laws, there are still occasional cases of overshoot and instability, the

reason seems to be related to characteristic decompositions and is still being investigated.

4.1. Accuracy check for a smooth problem. We solve the 2D Burgers equation (1.10) with the
same initial and boundary conditions as before using the fourth order finite volume WENO scheme [8]. The
solution is computed up to t = %? when no shock has appeared. The meshes used are 1): uniform meshes
with equilateral triangulation and 2): random triangulation. For the uniform meshes we do not seek positive
weights as was done in [8], rather we use the splitting technique to treat the negative linear weights when

they appear. Table 4.1 indicates that close to fourth order accuracy can be achieved.

4.2. Discontinuous problem 1: Scalar equation in 2D. Having shown the stable results with the
splitting treatment of negative linear weights for a fourth order finite volume WENO scheme for the Burgers
equation in section 2, we now test the fourth order WENQ scheme on the Buckley-Leverett problem whose
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TABLE 4.1
2D Burgers equation: accuracy check

”‘ uniform mesh m nonuniform mesh JJJ
g Ar L error | order Ar L>® error | order
2.57E-1 6.22E-4 2.67E-1 2.11E-3

1.29E-1 || 4.61E-5 | 3.75 || 1.26E-1 || 2.35E-4 | 2.92
| 6.436-2 || 2.18E-6 | 4.40 ||| 6.32E-2 || 2.90E-5 | 3.03
321E-2 | 1.38E-7 | 3.98 || 3.34E-2 | 2.61E6 | 3.78
| 1.61E-2 || 6.93E-0 | 4.32 || 1.66E2 | 271E-7 | 3.24

| 8.08E-3 || 6.70E-10 | 3.40 ||| 7.44E-3 || 1.57E-8 | 3.55
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FiG. 4.1. 2D Buckley-Leverett equation: the mesh.

flux is non-convex:

’U2

f) = s =

g(u) =0

with the initial data ¥ = 1 when —% < r < 0 and u = 0 elsewhere. The solution is computed up to
t = 0.4. The exact solution is a shock-rarefaction-contact discontinuity mixture. The mesh we use here is a

non-uniform triangulation, shown in Fig 4.1. Fig 4.2 shows that the waves have been resolved very well.

4.3. Discontinuous problem 2: System of equations in 2D. We consider the 2D Euler equations
in the domain [~1,1] x [0,0.2]. The Sod and Lax shock tube initial data is set in the z direction and periodic
boundary condition is applied in the y direction. We use the fourth order finite volume scheme on triangular
meshes to solve the above problem. The mesh we use here is uniform. But we do not seck positive weights as
was done in [8], rather we use the splitting technique in section 2 to treat the ﬂegaii;fé linear weighté when
they appear. In fact we set deliberately certain linear weights to be negative to test the splitting technique.
Fig 4.3 shows the numerical results of the Sod and Lax problems.

It seems that there are still oscillations and instability for some non-uniform triangular meshes for the
fourth order WENO schemes applied to Euler equations. As the method works well for the same meshes
with a scalar equation, the problem might be from the characteristic decompositions. This is still under

investigation.

5. Concluding remarks. We have devised and tested a simple splitting technique to treat the negative
linear weights in WENO zéchremes. This technique involves very little additional CPU time and gives good
results in rjnrqgjrgumerical tests. The only case where it still yields oscillations and instability is when a fourth
order finite volume WENO method is used on some non-uniform triangular meshes for Euler equations, the

reason of which, presumably related to characteristic decompositions, is still under investigation.
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FiG.

4.2. 2D Buckley-Leverctt equation at t=0.{, with splitting. Left: the solution surface; Right: the cut aty = 0.1 (solid

line: exact solution, symbols: numerical solution).

Fic.

4.3. Density plot, Left: Sod problem, Right: Laz problem, with splitting. Roughly [00 points in the z direction.
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